REVAMP Phase II

Workflow, Tutorials, Files & Contacts

This PowerPoint presentation will be available at https://www.valorgis.com/REVAMP along with YouTube videos, reference files, and automation tools.

If you have any problems accessing files on the website, please contact Spencer Ely at <u>sely@sgrc.us</u> or 229-333-5277.

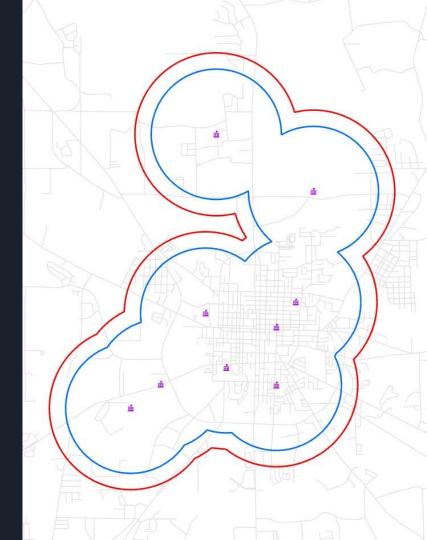
Phase 2 Pilot Team

- Coastal Regional Commission, ArcGIS Pro Tasks/Automation
- Heart of GA Regional Commission, Advisor
- Middle Georgia Regional Commission, Project Management
- Southern GA Regional Commission, Foundational Workflow
- Lawton Brantley, ITOS
- Paul Tanner, GDOT liaison
- GDOT Office of Transportation Data

Features to be validated and captured

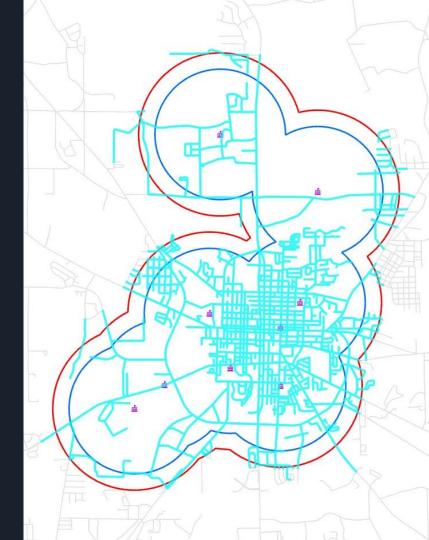
- School Locations *Prerequisite for beginning Phase 2
- Sidewalks within 1 mile of schools
- School Zones
- Crosswalks
- Pedestrian Signals
- Turn Lanes
- On-Street Parking

Foundational Workflow

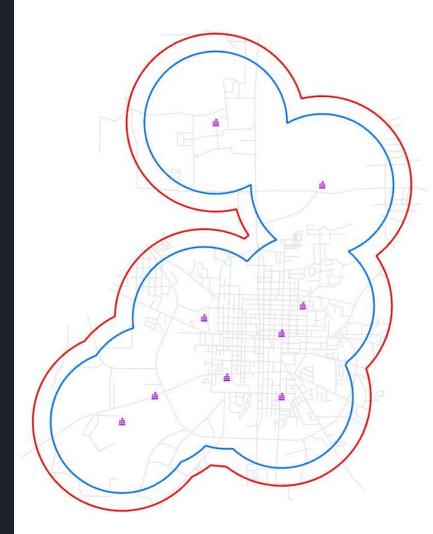

The following slides show a breakdown of the methods used to prepare the data for validation. However, this process has been automated by Tasks in ArcGIS Pro by Coastal Regional Commission. We give a breakdown here simply to show the process we chose to go with and explanations as to why. CRC will give a demo of their process after this presentation.

Sidewalks and Schools

- Collecting data for both local routes and state routes
- Collecting data within 1 mile of schools
- County-wide data collection, not limited to incorporated areas


Sidewalks

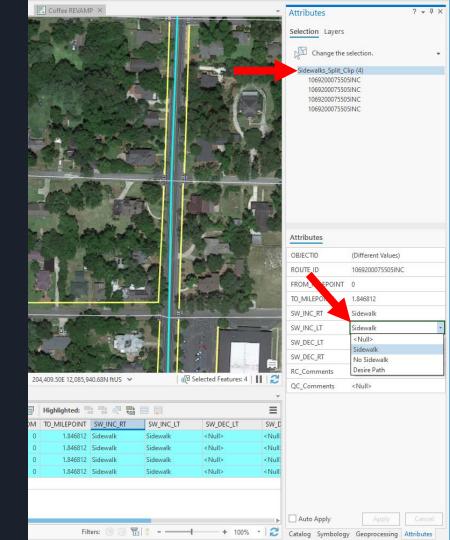
- The schools were buffered at 1 mile and at 1.25 miles.
- In the image, the inner 1 mile blue buffer is the target area, and the outer 1.25 mile red buffer is an overflow area that allows for a little margin of error in case the school location is off just a bit – or in case you'd like to capture more of the route
- The next step is to split the sidewalk layer at intersections
 - Since sidewalks typically begin and end at intersections, this makes it easier to select the route segments that contain sidewalks


Splitting Routes & Narrowing Search Area

- Now that we're working with segments of the routes in the sidewalk layer (sidewalks_split) we can remove the routes outside of the target area to make it easier to see which areas need to be captured.
- We then do a Select by Location on this new sidewalks_split layer where the routes intersect with the 1.25 mile buffer we created earlier.

Clipping vs Exporting Selected Features

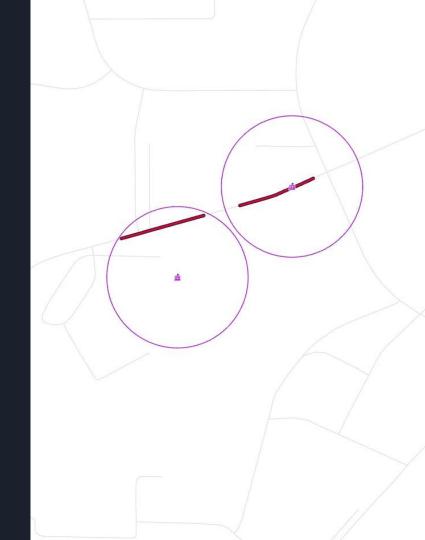
- If we were to do a hard clip on these routes, it would be counterproductive to our mission of being able to capture the routes to the end of the intersection or subdivision, etc.
- Instead, when we export these selected features, we are left with something like you see in the image here.


Sidewalk Schema

- Route_IDs end with INC or DEC, but most routes will be INC
- GDOT routes increase from South to North and from West to East
- Route_IDs with INC will have sidewalk attributes in the SW_INC_RT (sidewalk increasing right) or SW_INC_LT (sidewalk increasing left) fields.
 Route_IDs with DEC will use the SW_DEC_LT and SW_DEC_RT fields.

Field: 🕮 Add 🕎 Calculate Selection: 🖫 Select By Attributes 🚭 Zoom To 🚭 Switch 🗎 Clear 👼 Delete 🖨 Copy											
4	OBJECTID *	Shape *	ROUTE_ID	FROM	TO_MILEPOINT	SW_INC_RT	SW_INC_LT	SW_DEC_LT	SW_DEC_RT	RC_Comments	QC_Comments
1		Polyline ZM	1069200000112INC	0	0.083646	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>
2		Polyline ZM	1069200090405INC	0	0.808598	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>
3		Polyline ZM	1069200090405INC	0	0.808598	Sidewalk	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>
4		Polyline ZM	1069200090405INC	0	0.808598	No Sidewalk	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>
5		Polyline ZM	1069200090405INC	0	0.808598	Desire Path	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>
6		Polyline ZM	1069200094705INC	0	0.279186	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>
7	,	Polyline ZM	1069200094705INC	0	0.279186	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>
8		Polyline ZM	1069200052303INC	0	0.275784	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>

Sidewalk Capture


- Turn on the GIO Imagery or newer imagery if you have it
- Utilize any existing sidewalk layer you have. The yellow sidewalks in the image were from a grant map for the City of Douglas.
- In this image, I have selected multiple segments that have sidewalks on both sides, so I've used the attributes pane to choose "Sidewalk" for both the INC Right and INC Left fields.

School Zones

The only additional step for school zone collection is an additional buffer at 1500 ft from a school point. When collecting data for our pilot counties, we found that this buffer offered a good place to start looking for school zone signs on roads that bordered school properties.

This screen shot is from Coffee County. The purple lines are the 1500 ft buffer and the thick red lines here are the school zones.

Crosswalks

- Crosswalk types are defined and illustrated on page 120 and 121 of the MIRE 2.0 manual
 - For easy reference, these pages are available on the <u>REVAMP website</u>

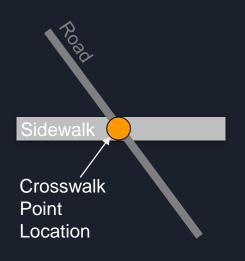
Unmarked crosswalk

Marked crosswalk

Marked crosswalk with supplemental devices

Marked crosswalk with refuge island

Marked crosswalk with refuge and supplemental devices


Raised crosswalk

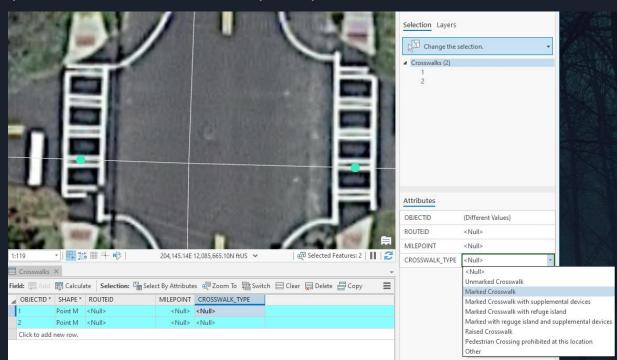

Sources: 1. City of Fortland, OR, 2. www.pedbikeimages.org / Dan Burden, 3. www.pedbikeimages.org / Tom Hanned,
4. www.pedbikeimages.org / Adam Fukushima, 5. www.pedbikeimages.org / Lyubov Zuyeva, 6. www.pedbikeimages.org / Dan Burden

Figure 22. Illustration of Crosswalk Types.

Crosswalks - Collection

• Crosswalks will be collected where the sidewalk and road intersect in incorporated areas AND countywide only within a 1 mile radius of a K-12 public/private school

 Pedestrian Signals are defined and illustrated on page 122 and 123 of the MIRE 2.0 manual

149. Pedestrian Signal Presence/Type

Definition: Presence and type of pedestrian signal for crossing this approach.

Recommended Attributes:

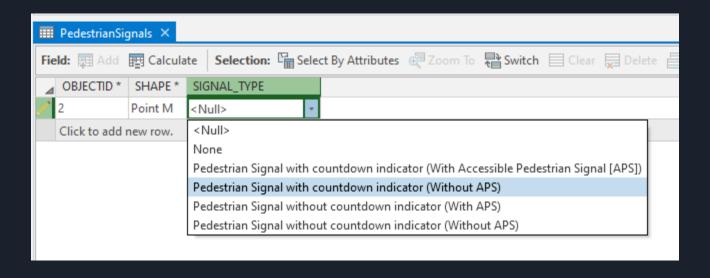
- None.
- 2. Pedestrian Signal with countdown indicator (with Accessible Pedestrian Signal [APS])
- 3. Pedestrian Signal with countdown indicator (w/o APS)
- 4. Pedestrian Signal without countdown indicator (with APS)
- 5. Pedestrian Signal without countdown indicator (w/o APS)

See Figure 23 on page 123 for additional detail.

Note: This is a new element in MIRE 2.0.

Countdown pedestrian signal

Accessible pedestrian signals


Figure 23. Illustration of Pedestrian Signal Types.

Pedestrian Signals - Collection

Pedestrian signals will be collected close to their real-world locations, off of the road segments and close to the actual devices in incorporated areas AND countywide only within a 1 mile radius of a

Pedestrian Signals - Collection

Turn Lanes

Turn lanes are defined and illustrated on pages 93 – 102 of the HPMS Field Manual

lur	TurnLanes												
T	OBJECTID*	SHAPE *	ROUTE_ID	FROM_MILEPOINT	TO_MILEPOINT	TL_INC_RT	TL_INC_LT	TL_DEC_LT	TL_DEC_RT	TL_INC_CCL	RC_Comments	QC_Comments	SHAPE_Length
F	1	Polyline ZM	1069200044800INC	0	10.005869		<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	52830.986014
	2	Polyline ZM	1069200000500INC	0	3.17997	<null></null>	<nul></nul>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	16790.243712
4	3	Polyline ZM	1005200033300INC	0	0.019002		<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	100.329421
	4	Polyline ZM	1069200757500INC	0	0.16443	2 Lanes	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	868.188543
	5	Polyline ZM	1069200085800INC	0	0.807094	3 Lanes	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	4261.456734
	6	Polyline ZM	1069200035800INC	0	2.123206	4 Lanes Continuous one side Continuous both sides	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	11210.528667
	7	Polyline ZM	1069200000112INC	0	0.083646		<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	441.652119
4	8	Polyline ZM	1069200061500INC	0	1.066221		<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	5629.647533
	9	Polyline ZM	1069200090405INC	0	0.808598	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	4269.398179
	10	Polyline ZM	1069200086600INC	0	0.231432	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	1221.962889
	11	Polyline ZM	1069200081500INC	0	1.117637	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	5901.122748
	12	Polyline ZM	1069200121100INC	0	0.110362	<null></null>	<nul></nul>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	582.712299
4	13	Polyline ZM	1069200047000INC	0	0.822953	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	4345.19326
	14	Polyline ZM	1069200094705INC	0	0.279186	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	1474.102534
	15	Polyline ZM	1069200052303INC	0	0.275784	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	1456.137859
	16	Polyline ZM	1069200038300INC	0	0.472822	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	2496.501042
	17	Polyline ZM	1069200666300INC	0	0.048383	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	255.460854
14 4 1 1 N 0 out of 1622 Selected)													

Turn Lanes - Collection

Collecting along local roads in incorporated areas

- While searching in a grid pattern, pay close attention to intersections where traffic lights
 or beacons/flashers are present. Turn lanes are common around these locations.
- Aside from paying attention around these intersections, pay attention to the aerial photography for areas where the road seems to widen, indicating turn lane presence.

On-Street Parking

Collecting along local roads in incorporated areas

• While searching in a grid pattern, pay attention to spots along roadways where parked cars/parking spots are painted on the roadway

Parking New X												
SHAPE *	ROUTE_ID	FROM_MILEPOINT	TO_MILEPOINT	Parking Type Left	Parking Type Rt	RC_Comments	QC_Comments	RouteDir	^			
▶ Polyline	1069200109000INC	0	0.044087		<nul></nul>	<nul></nul>	<nul></nul>	INC				
Polyline	1003200021800INC	0	0.005056	<nul></nul>	<nul></nul>	<nul></nul>	<nul></nul>	INC				
Polyline	1069200105705INC	0		Perpendicular Parking	<nul></nul>	<nul></nul>	<nul></nul>	INC				
Polyline	1069200067905INC	0			<nul></nul>		<nul></nul>	INC				
Polyline	1069200085605INC	0	0.059362		<null></null>	<nul></nul>	<nul></nul>	INC				
Polyline	1069200000110INC	0	0.148297		<nul></nul>	<nul></nul>	<null></null>	INC				
Polyline	1069200048600INC	0	0.113621		<null></null>	<nul></nul>	<null></null>	INC				
Polyline	1069200107600INC	0	0.080222	<nul></nul>	<nul></nul>	<nul></nul>	<null></null>	INC				
Polyline	1069200100900INC	01	0.238501	<nul></nul>	<nul></nul>	<nul></nul>	<nul></nul>	INC				
Polyline	1069200091605INC	0	0.091704	<nul></nul>	<nul></nul>	<nul></nul>	<nulb< th=""><th>INC</th><th></th></nulb<>	INC				
Polyline	1069200094800INC	0	0.676774		<nul></nul>	<nul></nul>	<nul></nul>	INC				
Polyline	1069200113100INC	0	0.343589	<nul></nul>	<nul></nul>	<nul></nul>	<null></null>	INC				
Polyline Polyline Polyline	1069200078605INC	0	0.202306	<nul></nul>	<null></null>	<nul></nul>	<null></null>	INC				
Polyline	1069200056200INC	0	1.087163	<nul></nul>	<nul></nul>	<nul></nul>	<null></null>	INC				
Polyline	1069200041100INC	0	0.327964	<nul></nul>	<null></null>	<nul></nul>	<nul></nul>	INC				
Polyline	1069200090005INC	0	0.193339	<nul></nul>	<nul></nul>	<nul></nul>	<null></null>	INC	~			
10												

Data Capture Tips

- Use any existing sidewalk layer that may be available to you from previous grants or transportation plans, etc
- For Crosswalks & Pedestrian Signals, pull in the Traffic Control Devices layer from Phase 1
 - Pay close attention to intersections where four way stops or traffic lights are present, as these generally contain crosswalks and possibly pedestrian signals
- Pull in any available walking/nature trail layer that may be available. This may help in finding crosswalks that do not occur at road intersections

Automating the Setup

Coastal Regional Commission has created ArcGIS Pro Tasks to automate setup. In addition, they will show a validation process using the Pro project that is set up via the tasks.

The data is available on https://www.valorgis.com/REVAMP.

If you have questions about the Pro tasks, contact Megan Hunnicutt at mhunnicutt@crc.ga.gov.

Questions